接下来,让我们看看如何改善聚合数据类型的显示。我们并不想完全克隆一个fmt.Sprint函数,我们只是构建一个用于调试用的Display函数:给定任意一个复杂类型 x,打印这个值对应的完整结构,同时标记每个元素的发现路径。让我们从一个例子开始。
Copy e, _ := eval.Parse("sqrt(A / pi)")
Display("e", e)
在上面的调用中,传入Display函数的参数是在7.9节一个表达式求值函数返回的语法树。Display函数的输出如下:
Copy Display e (eval.call):
e.fn = "sqrt"
e.args[0].type = eval.binary
e.args[0].value.op = 47
e.args[0].value.x.type = eval.Var
e.args[0].value.x.value = "A"
e.args[0].value.y.type = eval.Var
e.args[0].value.y.value = "pi"
你应该尽量避免在一个包的API中暴露涉及反射的接口。我们将定义一个未导出的display函数用于递归处理工作,导出的是Display函数,它只是display函数简单的包装以接受interface{}类型的参数:
gopl.io/ch12/display
Copy func Display(name string, x interface{}) {
fmt.Printf("Display %s (%T):\n", name, x)
display(name, reflect.ValueOf(x))
}
在display函数中,我们使用了前面定义的打印基础类型——基本类型、函数和chan等——元素值的formatAtom函数,但是我们会使用reflect.Value的方法来递归显示复杂类型的每一个成员。在递归下降过程中,path字符串,从最开始传入的起始值(这里是“e”),将逐步增长来表示是如何达到当前值(例如“e.args[0].value”)的。
因为我们不再模拟fmt.Sprint函数,我们将直接使用fmt包来简化我们的例子实现。
Copy func display(path string, v reflect.Value) {
switch v.Kind() {
case reflect.Invalid:
fmt.Printf("%s = invalid\n", path)
case reflect.Slice, reflect.Array:
for i := 0; i < v.Len(); i++ {
display(fmt.Sprintf("%s[%d]", path, i), v.Index(i))
}
case reflect.Struct:
for i := 0; i < v.NumField(); i++ {
fieldPath := fmt.Sprintf("%s.%s", path, v.Type().Field(i).Name)
display(fieldPath, v.Field(i))
}
case reflect.Map:
for _, key := range v.MapKeys() {
display(fmt.Sprintf("%s[%s]", path,
formatAtom(key)), v.MapIndex(key))
}
case reflect.Ptr:
if v.IsNil() {
fmt.Printf("%s = nil\n", path)
} else {
display(fmt.Sprintf("(*%s)", path), v.Elem())
}
case reflect.Interface:
if v.IsNil() {
fmt.Printf("%s = nil\n", path)
} else {
fmt.Printf("%s.type = %s\n", path, v.Elem().Type())
display(path+".value", v.Elem())
}
default: // basic types, channels, funcs
fmt.Printf("%s = %s\n", path, formatAtom(v))
}
}
让我们针对不同类型分别讨论。
Slice和数组: 两种的处理逻辑是一样的。Len方法返回slice或数组值中的元素个数,Index(i)获得索引i对应的元素,返回的也是一个reflect.Value;如果索引i超出范围的话将导致panic异常,这与数组或slice类型内建的len(a)和a[i]操作类似。display针对序列中的每个元素递归调用自身处理,我们通过在递归处理时向path附加“[i]”来表示访问路径。
虽然reflect.Value类型带有很多方法,但是只有少数的方法能对任意值都安全调用。例如,Index方法只能对Slice、数组或字符串类型的值调用,如果对其它类型调用则会导致panic异常。
结构体: NumField方法报告结构体中成员的数量,Field(i)以reflect.Value类型返回第i个成员的值。成员列表也包括通过匿名字段提升上来的成员。为了在path添加“.f”来表示成员路径,我们必须获得结构体对应的reflect.Type类型信息,然后访问结构体第i个成员的名字。
Maps: MapKeys方法返回一个reflect.Value类型的slice,每一个元素对应map的一个key。和往常一样,遍历map时顺序是随机的。MapIndex(key)返回map中key对应的value。我们向path添加“[key]”来表示访问路径。(我们这里有一个未完成的工作。其实map的key的类型并不局限于formatAtom能完美处理的类型;数组、结构体和接口都可以作为map的key。针对这种类型,完善key的显示信息是练习12.1的任务。)
指针: Elem方法返回指针指向的变量,依然是reflect.Value类型。即使指针是nil,这个操作也是安全的,在这种情况下指针是Invalid类型,但是我们可以用IsNil方法来显式地测试一个空指针,这样我们可以打印更合适的信息。我们在path前面添加“*”,并用括弧包含以避免歧义。
接口: 再一次,我们使用IsNil方法来测试接口是否是nil,如果不是,我们可以调用v.Elem()来获取接口对应的动态值,并且打印对应的类型和值。
现在我们的Display函数总算完工了,让我们看看它的表现吧。下面的Movie类型是在4.5节的电影类型上演变来的:
Copy type Movie struct {
Title, Subtitle string
Year int
Color bool
Actor map[string]string
Oscars []string
Sequel *string
}
让我们声明一个该类型的变量,然后看看Display函数如何显示它:
Copy strangelove := Movie{
Title: "Dr. Strangelove",
Subtitle: "How I Learned to Stop Worrying and Love the Bomb",
Year: 1964,
Color: false,
Actor: map[string]string{
"Dr. Strangelove": "Peter Sellers",
"Grp. Capt. Lionel Mandrake": "Peter Sellers",
"Pres. Merkin Muffley": "Peter Sellers",
"Gen. Buck Turgidson": "George C. Scott",
"Brig. Gen. Jack D. Ripper": "Sterling Hayden",
`Maj. T.J. "King" Kong`: "Slim Pickens",
},
Oscars: []string{
"Best Actor (Nomin.)",
"Best Adapted Screenplay (Nomin.)",
"Best Director (Nomin.)",
"Best Picture (Nomin.)",
},
}
Display("strangelove", strangelove)调用将显示(strangelove电影对应的中文名是《奇爱博士》):
Copy Display strangelove (display.Movie):
strangelove.Title = "Dr. Strangelove"
strangelove.Subtitle = "How I Learned to Stop Worrying and Love the Bomb"
strangelove.Year = 1964
strangelove.Color = false
strangelove.Actor["Gen. Buck Turgidson"] = "George C. Scott"
strangelove.Actor["Brig. Gen. Jack D. Ripper"] = "Sterling Hayden"
strangelove.Actor["Maj. T.J. \"King\" Kong"] = "Slim Pickens"
strangelove.Actor["Dr. Strangelove"] = "Peter Sellers"
strangelove.Actor["Grp. Capt. Lionel Mandrake"] = "Peter Sellers"
strangelove.Actor["Pres. Merkin Muffley"] = "Peter Sellers"
strangelove.Oscars[0] = "Best Actor (Nomin.)"
strangelove.Oscars[1] = "Best Adapted Screenplay (Nomin.)"
strangelove.Oscars[2] = "Best Director (Nomin.)"
strangelove.Oscars[3] = "Best Picture (Nomin.)"
strangelove.Sequel = nil
我们也可以使用Display函数来显示标准库中类型的内部结构,例如*os.File
类型:
Copy Display("os.Stderr", os.Stderr)
// Output:
// Display os.Stderr (*os.File):
// (*(*os.Stderr).file).fd = 2
// (*(*os.Stderr).file).name = "/dev/stderr"
// (*(*os.Stderr).file).nepipe = 0
可以看出,反射能够访问到结构体中未导出的成员。需要当心的是这个例子的输出在不同操作系统上可能是不同的,并且随着标准库的发展也可能导致结果不同。(这也是将这些成员定义为私有成员的原因之一!)我们甚至可以用Display函数来显示reflect.Value 的内部构造(在这里设置为*os.File
的类型描述体)。Display("rV", reflect.ValueOf(os.Stderr))
调用的输出如下,当然不同环境得到的结果可能有差异:
Copy Display rV (reflect.Value):
(*rV.typ).size = 8
(*rV.typ).hash = 871609668
(*rV.typ).align = 8
(*rV.typ).fieldAlign = 8
(*rV.typ).kind = 22
(*(*rV.typ).string) = "*os.File"
(*(*(*rV.typ).uncommonType).methods[0].name) = "Chdir"
(*(*(*(*rV.typ).uncommonType).methods[0].mtyp).string) = "func() error"
(*(*(*(*rV.typ).uncommonType).methods[0].typ).string) = "func(*os.File) error"
...
观察下面两个例子的区别:
Copy var i interface{} = 3
Display("i", i)
// Output:
// Display i (int):
// i = 3
Display("&i", &i)
// Output:
// Display &i (*interface {}):
// (*&i).type = int
// (*&i).value = 3
在第一个例子中,Display函数调用reflect.ValueOf(i),它返回一个Int类型的值。正如我们在12.2节中提到的,reflect.ValueOf总是返回一个具体类型的 Value,因为它是从一个接口值提取的内容。
在第二个例子中,Display函数调用的是reflect.ValueOf(&i),它返回一个指向i的指针,对应Ptr类型。在switch的Ptr分支中,对这个值调用 Elem 方法,返回一个Value来表示变量 i 本身,对应Interface类型。像这样一个间接获得的Value,可能代表任意类型的值,包括接口类型。display函数递归调用自身,这次它分别打印了这个接口的动态类型和值。
对于目前的实现,如果遇到对象图中含有回环,Display将会陷入死循环,例如下面这个首尾相连的链表:
Copy // a struct that points to itself
type Cycle struct{ Value int; Tail *Cycle }
var c Cycle
c = Cycle{42, &c}
Display("c", c)
Display会永远不停地进行深度递归打印:
Copy Display c (display.Cycle):
c.Value = 42
(*c.Tail).Value = 42
(*(*c.Tail).Tail).Value = 42
(*(*(*c.Tail).Tail).Tail).Value = 42
...ad infinitum...
许多Go语言程序都包含了一些循环的数据。让Display支持这类带环的数据结构需要些技巧,需要额外记录迄今访问的路径;相应会带来成本。通用的解决方案是采用 unsafe 的语言特性,我们将在13.3节看到具体的解决方案。
带环的数据结构很少会对fmt.Sprint函数造成问题,因为它很少尝试打印完整的数据结构。例如,当它遇到一个指针的时候,它只是简单地打印指针的数字值。在打印包含自身的slice或map时可能卡住,但是这种情况很罕见,不值得付出为了处理回环所需的开销。
练习 12.1: 扩展Display函数,使它可以显示包含以结构体或数组作为map的key类型的值。
练习 12.2: 增强display函数的稳健性,通过记录边界的步数来确保在超出一定限制后放弃递归。(在13.3节,我们会看到另一种探测数据结构是否存在环的技术。)